### Government of Karnataka Department of Technical Education Bengaluru

| Design<br>Algorithms<br>Implement | Course Title: Design and Analysis of Algorithms             |                         |                         |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------|-------------------------|-------------------------|--|--|--|--|--|
|                                   | Scheme (L:T:P) : <b>4:0:0</b>                               | Total Contact Hours: 52 | Course Code:<br>15CS53T |  |  |  |  |  |
|                                   | Type of Course: Lectures, Self<br>Study & Student Activity. | Credit :04              | Core/ Elective:<br>Core |  |  |  |  |  |
| CIE- 25 Mark                      | S                                                           | S                       | SEE- 100 Marks          |  |  |  |  |  |

### **Prerequisites:**

Knowledge of Data Structures.

#### **Course Objectives**

Study the concepts of fundamentals of algorithm, Analysis of algorithm efficiency, Brute force techniques, Divide-and-Conquer, Decrease-and-Conquer, Greedy techniques.

#### **Course Outcome**

# On successful completion of the course, the students will be able to attain below Course Outcome (CO):

|     | Course outcome                                                           | CL       | Linked PO      | Teaching<br>Hours |
|-----|--------------------------------------------------------------------------|----------|----------------|-------------------|
| CO1 | Discuss the fundamentals of algorithm.                                   | R,U      | 1,2,3,7,8,9,10 | 10                |
| CO2 | Describe the analysis of algorithm efficiency using different notations. | R,U,A,AL | 1,2,3,7,8,9,10 | 10                |
| CO3 | Discuss various problems using Brute force technique.                    | U,A,AL   | 1,2,3,7,8,9,10 | 12                |
| CO4 | Describe various problems using Divide-<br>and-Conquer Technique.        | U,A,AL   | 1,2,3,7,8,9,10 | 08                |
| CO5 | Describe various problems using Decrease-and-Conquer                     | U,A,AL   | 1,2,3,7,8,9,10 | 06                |
| CO6 | Discuss Greedy Techniques                                                | U,A      | 1,2,3,7,8,9,10 | 06                |
|     |                                                                          |          | Total          | 52                |

**Legends:** R = Remember U= Understand; A= Apply AL=Analyze E=Evaluate C= Create and above levels (Bloom's revised taxonomy)

### **Course-PO Attainment Matrix**

| Course                               | Programme Outcomes |   |   |   |   |   |   |   |   |    |
|--------------------------------------|--------------------|---|---|---|---|---|---|---|---|----|
|                                      | 1                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Design and Analysis of<br>Algorithms | 3                  | 3 | 3 | - | - | - | 3 | 3 | 3 | 3  |

1

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO. If >40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3 If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2 If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1 If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

#### **Course Content and Blue Print of Marks for SEE**

| Unit<br>No | Unit Name                                                     | Hour | Questions to be set<br>for<br>SEE |    |    |    | Marks<br>Weightage | Marks<br>Weightage<br>(%) |
|------------|---------------------------------------------------------------|------|-----------------------------------|----|----|----|--------------------|---------------------------|
|            |                                                               |      | R                                 | U  | Α  | AL | А                  |                           |
| Ι          | Introduction                                                  | 10   | 10                                | 15 | 05 | -  | 30                 | 20.68                     |
| II         | Fundamentals of the<br>Analysis of<br>Algorithm<br>Efficiency | 10   | 05                                | 05 | 10 | 10 | 30                 | 20.68                     |
| III        | Brute Force                                                   | 12   |                                   | 10 | 10 | 15 | 35                 | 24.14                     |
| IV         | Divide-and-Conquer                                            | 08   | -                                 | 05 | 05 | 10 | 20                 | 13.79                     |
| V          | Decrease-and-<br>Conquer                                      | 06   | -                                 | 05 | 05 | 05 | 15                 | 10.35                     |
| VI         | Greedy Technique                                              | 06   | -                                 | 05 | 05 | 05 | 15                 | 10.35                     |
|            | Total                                                         | 52   | 15                                | 45 | 40 | 45 | 145                | 100                       |

#### **UNIT I : Introduction**

What is an Algorithm? Fundamentals of Algorithmic problem solving, Important problem types. Fundamental data structures

#### **UNIT II: Fundamentals of the Analysis of Algorithm Efficiency** 10 Hrs

Analysis Framework, Measuring the input size, Units for measuring Running time, Orders of Growth, Worst-case, Best-case and Average-case efficiencies, Asymptotic Notations and Basic Efficiency classes, Informal Introduction, O-notation,  $\Omega$ -notation,  $\theta$ -notation, mathematical analysis of non-recursive algorithms, mathematical analysis of recursive algorithms.

#### **UNIT III: Brute Force & Exhaustive Search**

Introduction to Brute Force approach, Selection Sort and Bubble Sort, Sequential search, Exhaustive Search- Travelling salesman Problem and Knapsack Problem, Depth First Search, Breadth First Search

### **UNIT IV: Divide-and-Conquer**

Introduction, Merge Sort, Quick Sort, Binary Search, Binary Tree traversals and related properties.

Karnataka State

### **UNIT V: Decrease-and-Conquer**

2

CS&E

10 Hrs

# **08 Hrs**

12 Hrs

06 Hrs

Decrease-and-Conquer: Introduction, Insertion Sort, Topological Sorting.

#### **UNIT VI: Greedy Technique**

06 Hrs

Greedy Technique: Introduction, Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm

#### **Text** books

1. **Introduction to the Design and Analysis of Algorithms**, 3<sup>rd</sup> edition, Anany Levitin, Pearson Publication, ISBN: 9789332583771

#### References

- 1. http://nptel.ac.in/courses/106101060/
- 2. http://www.tutorialspoint.com/data structures algorithms/
- 3. Design & Analysis of Algorithms, S. Nandagopalan, Sapna Book House.

#### Suggested list of student activities

# *Note: the following activities or similar activities for assessing CIE (IA) for 5 marks (Any one)*

Student activity like mini-project, surveys, quizzes, etc.

1. Each individual student should do any one of the following type activity or any other similar activity related to the course and before conduction, get it approved from concerned course coordinator and programme coordinator.

2. Each student should conduct different activity and no repeating should occur

| 1 | Build and execute programs from the unsolved exercises given from the course textbook at the end of each chapters. |
|---|--------------------------------------------------------------------------------------------------------------------|
| 2 | Quiz                                                                                                               |

### **Course Delivery**

The course will be delivered through lectures and Power point presentations/ Video

### **Course Assessment and Evaluation Scheme**

| Method          | What                    |             | To<br>who | When/Where<br>(Frequency in the                                                         | Max<br>Marks | Evidence collected       | Course outcomes                                                                |
|-----------------|-------------------------|-------------|-----------|-----------------------------------------------------------------------------------------|--------------|--------------------------|--------------------------------------------------------------------------------|
| Assessment      | CIE                     | IA          | adents B  | Three IA tests<br>(Average of three<br>tests will be<br>computed)<br>Student activities | 20           | Blue books               | 1 to 6                                                                         |
| sct /           |                         |             | Sti       | Total                                                                                   | 25           |                          |                                                                                |
| Dire            | SEE                     | End<br>Exam |           | End of the course                                                                       | 100          | Answer scripts at<br>BTE | 1 to 6                                                                         |
| irect<br>nent   |                         |             | ts        | Middle of the course                                                                    |              | Feedback forms           | 1, 2, 3 Delivery of course                                                     |
| Indi<br>Assessn | End of Course<br>Survey |             | Studen    | End of the course                                                                       |              | Questionnaires           | 1 to 6 Effectiveness<br>of Delivery of<br>instructions &<br>Assessment Methods |

<u>Note</u>: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

| Sl. No | Bloom's Category | %  |
|--------|------------------|----|
| 1      | Remembrance      | 10 |
| 2      | Understanding    | 30 |
| 3      | Application      | 30 |
| 4      | Analysis         | 30 |

# Note to IA verifier: The following documents to be verified by CIE verifier at the end of semester

- 1. Blue books (20 marks)
- 2. Student suggested activities report for 5 marks
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

|                 | FORMAT OF I A TEST QUESTION PAPER (CIE) |                                      |  |       |           |    |    |  |  |
|-----------------|-----------------------------------------|--------------------------------------|--|-------|-----------|----|----|--|--|
| Test/Da<br>Tir  | ite and<br>ne                           | and Semester/year Course/Course Code |  |       | Max Marks |    |    |  |  |
| Ex: I test/     | 6 <sup>th</sup> week                    | V SEM                                |  |       |           | 20 |    |  |  |
| of sem 10-11 Am |                                         | Year:                                |  |       | 20        |    |    |  |  |
| Name of C       | ourse coord                             | linator :                            |  |       | -         |    |    |  |  |
| Units:C         | 0's:                                    |                                      |  |       |           |    |    |  |  |
| Question        |                                         | Question                             |  | MARKS | CL        | CO | PO |  |  |
| no              |                                         | Question                             |  |       | CL        | co | 10 |  |  |
| 1               |                                         |                                      |  |       |           |    |    |  |  |
| 2               |                                         |                                      |  |       |           |    |    |  |  |
| 3               |                                         |                                      |  |       |           |    |    |  |  |
| 4               |                                         |                                      |  |       |           |    |    |  |  |

Note: Internal choice may be given in each CO at the same cognitive level (CL).

### **MODEL QUESTION PAPER (CIE)**

| Test/D<br>Ti                    | ate and ime                                                  | Semester/year               | <b>Course/Course Code</b>                  | Max Marks |     |            |  |  |
|---------------------------------|--------------------------------------------------------------|-----------------------------|--------------------------------------------|-----------|-----|------------|--|--|
| Ex: I test/6 <sup>th</sup> week |                                                              | V SEM                       | V SEM Design and Analysis<br>of Algorithms |           |     | 20         |  |  |
| of sem                          | 10-11 AM                                                     | Year: 2017-18               | Course code:<br>15CS53T                    |           | 20  |            |  |  |
| Name of (                       | Course coord                                                 | dinator :                   |                                            |           |     |            |  |  |
| Units:1,2                       | Co: 1,2                                                      |                             |                                            |           |     |            |  |  |
|                                 | 1                                                            | Note: Answ                  | er all questions                           |           |     |            |  |  |
| Questio                         |                                                              | Question                    |                                            | CL        | CO  | РО         |  |  |
|                                 | <b>F</b> 1 · F                                               | 1:12 1 :4 0                 |                                            | TT        | 1.0 | 10070      |  |  |
| 1                               | Explain Eu                                                   | clid's algorithm for comp   | outing GCD of two                          | U,        | 1,2 | 1,2,3,7,8, |  |  |
|                                 | numbers.(5                                                   | 5) <b>OR</b>                |                                            | А         |     | 9,10       |  |  |
|                                 | Explain Li                                                   | near data structures with e | example. (5)                               |           |     |            |  |  |
| 2                               | Write an al                                                  | gorithm for sequential sea  | arch and analyse its                       | U,        | 1,2 | 1,2,3,7,8, |  |  |
|                                 | worst-case, best-case and average-case efficiencies. (5) A 9 |                             |                                            |           |     |            |  |  |
|                                 | OR                                                           |                             |                                            |           |     | · ·        |  |  |
|                                 | Write a rec                                                  | sursive algorithm for comp  | puting the factorial                       |           |     |            |  |  |

4

|   | function for an arbitrary non-negative integer.(5) |    |   |            |
|---|----------------------------------------------------|----|---|------------|
| 3 | Apply selection sort to the following array        | А, | 2 | 1,2,3,7,8, |
|   | 45,23,89,10,11,27,38 (5)                           | AL |   | 9,10       |
| 4 | Differentiate undirected and directed graphs with  | U  | 1 | 1,2,3,7,8, |
|   | examples. (5)                                      |    |   | 9,10       |

## Format for Student Activity Assessment

| DIMENSION                        | Unsatisfactory<br>1                                                | Developing<br>2                                                                      | Satisfactory<br>3                                                     | Good<br>4                                                         | Exemplary<br>5                                                                                                 | Score           |
|----------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------|
| Collection of<br>data            | Does not<br>collect any<br>information<br>relating to the<br>topic | Collects<br>very limited<br>information;<br>some relate<br>to the topic              | Collects<br>some basic<br>information;<br>refer to the<br>topic       | Collects<br>relevant<br>information;<br>concerned<br>to the topic | Collects a<br>great deal of<br>information;<br>all refer to<br>the topic                                       | 3               |
| Fulfill team's<br>roles & duties | Does not<br>perform any<br>duties assigned<br>to the team<br>role  | Performs<br>very little<br>duties                                                    | Performs<br>nearly all<br>duties                                      | Performs all<br>duties                                            | Performs all<br>duties of<br>assigned<br>team roles<br>with<br>presentation                                    | 4               |
| Shares work<br>equally           | Always relies<br>on others to do<br>the work                       | Rarely does<br>the assigned<br>work; often<br>needs<br>reminding                     | Usually<br>does the<br>assigned<br>work; rarely<br>needs<br>reminding | Does the<br>assigned job<br>without<br>having to be<br>reminded.  | Always<br>does the<br>assigned<br>work<br>without<br>having to be<br>reminded<br>and on<br>given time<br>frame | 3               |
| Listen to<br>other Team<br>mates | Is always<br>talking; never<br>allows anyone<br>else to speak      | Usually<br>does most<br>of the<br>talking;<br>rarely<br>allows<br>others to<br>speak | Listens, but<br>sometimes<br>talk too<br>much                         | Listens and<br>contributes<br>to the<br>relevant<br>topic         | Listens and<br>contributes<br>precisely to<br>the relevant<br>topic and<br>exhibit<br>leadership<br>qualities  | 3               |
|                                  |                                                                    |                                                                                      |                                                                       |                                                                   | TOTAL                                                                                                          | 13/4 = 3.25 = 4 |

Note: This is only an example. Appropriate rubrics/criteria may be devised by the concerned course co-ordinator for assessing the given activity.

| MODEL QUESTION PAPER                                   | Code: 15CS53T |
|--------------------------------------------------------|---------------|
| <b>Diploma in Computer Science &amp; Engineering</b>   |               |
| V Semester                                             |               |
| <b>Course Title: Design and Analysis of Algorithms</b> |               |

15CS53T

5

5X6=30 Marks

# Time: 3 Hours

### **PART-A**

## Answer any SIX questions. Each carries 5 marks.

- 1. Explain Euclid's algorithm for computing GCD of two numbers.
- 2. Differentiate undirected and directed graphs with examples.
- 3. Write a pseudo code for finding the value of the largest element in a list of n numbers.
- 4. Write a recursive algorithm for computing the factorial function for an arbitrary nonnegative integer.
- 5. Define Brute force and explain it with example.
- 6. Define binary tree. Explain its traversals.
- 7. Derive an expression for worst case analysis of binary search algorithm
- 8. Apply Prim's algorithm for the graph shown below



9. Write Greedy algorithm and explain

# **PART-B**

# Answer any <u>SEVEN</u> questions. Each carries 10 marks.

7X10=70 Marks

- 1. Explain the steps involved in designing and analysing an algorithm.
- 2. Write a note on Sorting and Searching problem types.
- 3. Write an algorithm for sequential search and analyse its worst-case, best-case and average-case efficiencies.
- 4. Apply selection sort to the following array : 45,23,89,10,11,27,38
- 5. Explain bubble sort method with an example. Use Brute Force approach.
- 6. Solve using DFS algorithm



- 8. Write an algorithm of Quick Sort and trace it for an example data set.
- 9. Compute time complexity of insertion sort in the best, worst and average cases.
- 10. Write the Kruskal's algorithm to find the minimum cost spanning tree.



# **MODEL QUESTION BANK**

**Diploma in Computer Science & Engineering V** Semester **Course Title: Design and Analysis of Algorithms** 

15CS53T

| CO   | Question                                                               | CL           | Marks |
|------|------------------------------------------------------------------------|--------------|-------|
| I    | Define Algorithm. Give an example illustrating the notion of an        | R            |       |
|      | algorithm.                                                             |              |       |
|      | Explain Euclid's algorithm for computing GCD of two numbers.           | U,A          |       |
|      | Explain Linear data structures with example.                           | U            |       |
|      | Define Graph, Vertex, Edge, Path and Length of a path with example     | R            | 05    |
|      | for each.                                                              |              |       |
|      | Write a note on Weighted graph with an example.                        |              |       |
|      | Give the differences between sets and dictionaries.                    | R            |       |
|      | Explain the steps involved in designing and analysing of an algorithm. | U            | 10    |
|      | Write a note on Sorting and Searching problem types.                   |              | 10    |
|      | Explain Rooted Trees and Ordered Trees with example for each.          | U            |       |
|      | Write an algorithm for sequential search.                              | U,A          |       |
|      | Write a pseudo code for finding the value of the largest element in a  | U,A          |       |
|      | list of n numbers.                                                     |              | 05    |
|      | Write a recursive algorithm for computing the factorial function for   | U,A          |       |
|      | an arbitrary non-negative integer.                                     |              |       |
| тт   | Illustrate an algorithm for sequential search and Analyse its worst-   | AL           |       |
| 11   | case, best-case and average-case efficiencies.                         |              | 10    |
|      | Explain Big-on notation, Big-omega notation and Big-theta notation     | AL           | 10    |
|      | along with its graph.                                                  | TI           |       |
|      | Explain basic Asymptotic efficiency classes.                           |              |       |
|      | Define Brute force and explain it with example                         | A,AL<br>P II |       |
|      | Write an algorithm for closest pair problem using brute force          |              | 5     |
|      | Illustrate an algorithm for Selection sort with example                |              |       |
|      | Illustrate an algorithm for Bubble sort with example.                  | A AL         |       |
|      | Illustrate Travelling salesman problem with example.                   | A.AL         |       |
|      | Explain Breadth First Search algorithm                                 | A.AL         | 10    |
| III  | Consider knapsack for the instance given below                         | A.AL         |       |
|      | N=3                                                                    | ,            |       |
|      | [w1,w2,w3] = [100,10,10]                                               |              |       |
|      | [p1,p2,p3] = [20,15,15]                                                |              |       |
|      | M=105                                                                  |              |       |
|      | Find all feasible and infeasible solutions                             |              |       |
|      | Explain Depth First Search algorithm                                   | A,AL         |       |
|      | Write an algorithm for binary search.                                  | U,A          | _     |
| 11.7 | Define binary tree. Explain its traversals.                            | R,U          | 5     |
| 1 V  | Explain Divide-and-Conquer technique with neat diagram.                | U            |       |
|      | Explain Merge sort algorithm with example.                             | A,AL         | 10    |
|      | A nalyze the binery search algorithm for best and worst and            | A,AL         | 10    |
|      | Analyze the offary search algorithm for dest case, worst case and      | AL           |       |
|      | Explain Decrease-and-Conquer technique with neat diagram               | I            | 05    |
| V    | Explain topological sorting with assemble                              |              | 03    |
|      | Write an algorithm for Insertion sort with example                     |              | 10    |
|      | Compute time complexity of insertion sort in the best worst and        | A,AL         | 10    |
|      | average cases                                                          | AL           |       |
|      | Explain greedy method with appropriate example                         | <b>U</b> A   | 5     |
|      | Explain Greedy method with appropriate example                         | 0,4          | 5     |

15CS53T

|    | Can the Prim's algorithm be applied for directed graphs? justify    | U,A |    |
|----|---------------------------------------------------------------------|-----|----|
| VI | Write the algorithm to find the minimum cost spanning tree based on | А,  |    |
|    | Prim's logic                                                        | AL  |    |
|    | Explain Kruskal's algorithm for constructing a minimum spanning     | AL  | 10 |
|    | tree.                                                               |     |    |
|    | Write Prim's algorithm for constructing a minimum spanning tree     | AL  |    |
|    | Explain Dijkstra algorithm with an example.                         | AL  |    |

