Government of Karnataka Department of Technical Education Bengaluru

Irdail Navion** Processor Block Dispers	Course Title: Computer Organization							
	Scheme (L:T:P) : 4:0:0	Total Contact Hours: 52	Course Code: 15CS32T					
	Type of Course: Lectures, Self	Credit :04	Core/ Elective:					
	Study & Student Activity.	Cicait .v i	Core					
CIE- 25 Mark	S		SEE- 100 Marks					

Prerequisites

Fundamentals of Digital electronics and basics of Computers and its peripherals.

Course Objectives

Understand the organization of a computer with its various processing units, memory and peripherals.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	CL	Linked PO	Teaching Hours
CO1	Recognize and explain the functional units of computers	R	1,2,10	02
CO2	Describe assembly languages and machine instructions by analyzing how the data is stored and fetched from memory.	U, A	1,2,3,4,8,10	10
CO3	Explain the execution of complete instruction and bus organizations.	$oldsymbol{U}$	2,8,9,10	08
CO4	Identify various interrupt handling mechanism and buses.	U, A	1,2,3,8,9,10	10
CO5	Differentiate between different types of memories.	U, A	1,2,3,4,5,6,7,8,9,10	14
CO6	Discuss core architecture and pipelined concept.	U	2,10	08
		Total	sessions	52

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Course-PO Attainment Matrix

Course	Programme Outcomes									
	1	2	3	4	5	6	7	8	9	10
Computer Organisation	3	3	2	2	1	1	1	3	3	3

Level 3- Highly Addressed, Level 2-Moderately Addressed, Level 1-Low Addressed.

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO. If \geq 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3 If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2 If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1 If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

Course Content and Blue Print of Marks for SEE

Unit No	Unit Name	Hour	_	Questions to be set for SEE		set for		set for		set for		set for		set for		set for		Marks Weightage	Marks Weightage (%)
			R	U	A	A													
I	Basic Structure Of Computers	02	5	-	-	5	4												
II	Machine Instructions and Programs	10	-	20	8	28	18												
III	Basic Processing Unit	08	-	22	-	22	15												
IV	Input/Output Organization	10	-	18	10	28	18												
V	The Memory system	14	-	20	18	38	30												
VI	Processors and Pipelining	08	-	24	-	24	15												
	Total	52	5	104	36	145	100												

UNIT I: Basic Structures of Computers

02 Hrs

Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures.

UNIT II: Machine Instructions & Programmes

10 Hrs

Memory Locations and Addresses, Byte Addressability, Big Endian and Little Endian Assignments, Word Alignment, Accessing numbers, characters and character strings, Memory Operations, Instruction and Instruction sequencing, Register Transfer notation, Assembly Language notation, Basic instruction types, Instruction execution and straight line sequencing, Branching, Condition codes, Addressing modes, Implementation of variables and constants, Indirection and pointers, Indexing and arrays, Relative addressing, Additional modes, Assembly Language, Assembler directives, Assembly and execution of programs, Basic Input- Output Operations.

UNIT III: Basic Processing Unit

08 Hrs

Some Fundamental Concepts, Register transfers, Performing an Arithmetic or Logic operation, Fetching a word from memory, Storing a word in memory, Execution of a complete Instruction, Branch instructions, Multiple Bus Organization, Hardwired

Control(basic block diagram only), A complete processor, Basic organization of Micro programmed Control Unit.

UNIT IV: Input Output Organization

10 Hrs

Accessing I/O Devices, Interrupts, Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling Device requests, Exceptions, Direct Memory Access, Bus arbitration, Buses, Synchronous bus, Asynchronous bus, Interface Circuits, Parallel port and Serial port (Basic concept only), Standard I/O Interfaces (Basic concepts only), Peripheral Component Interconnect (PCI) Bus, SCSI Bus(Basic concepts only), Universal Serial Bus (USB) (Basic concepts only)

UNIT V: The Memory System

14 Hrs

Some Basic Concepts, Semiconductor RAM Memories, Internal Organization of memory chips, Static Memories, Asynchronous DRAMs, Synchronous DRAMs, Structure of larger memories, Memory system consideration, Rambus memory, Read-Only Memories-ROM, PROM, EPROM, EPROM, Flash Memory, Speed, Size and Cost, Cache Memories...

UNIT VI: Processors and Pipelining

08 Hrs

Processor- Introduction, Advanced processor technology, instruction set architectures, CISC scalar processor, RISC scalar processor, comparison CISC and RISC, super scalar processor (basic concept only), VLIW architecture, comparison of super scalar and VLIW, Multi core architecture

Pipelining- Introduction, pipeline principles-linear pipeline processor-Asynchronous model, synchronous model, Non linear pipeline processor, classification of pipeline processor

Text Books

- 1. Computer Organization, Carl Hamacher, zvonko Vranesic and Safwat Zaky, McGraw Hill, 5^{th} edition (Chapters 1, 2, 4, 5, 7, for UNIT I to UNIT V)
- 2. Advanced Computer Architecture (A practical approach), Rajiv Chopra, S. Chand, Revised edition, reprint 2014, ISBN 8121930774 for *UNIT VI page no 133 to 138*, 143 to 145, 192 to 194, 218 to 219, 221 to 223

References

- 1. http://elearning.vtu.ac.in/06CS46.html
- 2. http://nptel.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/comp org arc/web/
- 3. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 4. Computer architecture and organization , 4th edition , P Chakraborty , JAICO publishers
- 5. http://www.srmuniv.ac.in/downloads/computer architecture.pdf
- 6. http://www.dauniv.ac.in/downloads/CArch PPTs/CompArchCh06L01PipeLine.pdf

Suggested list of student activities

Note: The following activities or similar activities for assessing CIE (IA) for 5 marks (Any one)

Student activity like mini-project, surveys, quizzes, etc. should be done in group of 3-5 students.

- 1. Each group should do any one of the following type activity or any other similar activity related to the course and before conduction, get it approved from concerned course coordinator and programme co-ordinator
- 2. Each group should conduct different activity and no repeating should occur.

1	Conduct a survey on various types of processors available with their features and
	submit a report.
2	List out the features of 8086 microprocessor and 8051 micro controller with respect to architecture and working.
3	Submit a report on hardware and software interrupts.
4	A Case study on Moore's Law about the processors and submit a report.
5	Conduct a survey on types of memories and also about the cost and speed of
	various memories with comparison.

Course Delivery

The course will be delivered through lectures and Power point presentations/ Video

Course Assessment and Evaluation Scheme

Method	What		To	When/Where	Max	Evidence	Course
			who	(Frequency in	Marks	collected	outcomes
			m	the course)			
	CIE	IA		Three IA tests			1 to 6
				(Average of	20	Blue books	
				three tests will			
ent			nts	be computed)			14-6
sssm	ssme		Students	Student activity	05	Report	1 to 6
Direct Assessment			∞	Total	25		
irec	SEE	End		End of the	100	Answer scripts	1 to 6
Д		Exam		course	100	at BTE	
	Student			Middle of the			1,2,3
	Feedbac	k on		course		Feedback forms	Delivery of
	course						course
	End of C	Course	ro	End of the			1 to 6
lent	Survey		Students	course			Effectiveness
SSIM			nqe				of Delivery
Indirect Assessment			St			Questionnaires	of
t À						(instructions
reci							&
ndi:							Assessment
	1 11 1		. 1.0	20 1 4	1 6	1 , , 1 11 1	Methods

Note: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

Sl. No	Bloom's Category	%
1	Remembrance	10
2	Understanding	50
3	Application	40

Note to IA verifier: The following documents to be verified by CIE verifier at the end of semester

- 1. Blue books (20 marks)
- 2. Student suggested activities report for 5 marks
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

FORMAT OF I A TEST OUESTION PAPER (CIE)

	I O	INIAI OF LATE	INDITION IN	AI LIN (C				
Test/Date	e and Time	Semester/year	Course/Course Co	Ma	ks			
T	6 th weak of	I/II SEM				20		
sem 10	0-11 Am	Year:			20			
	Name of Course coordinator: Units:							
CO's:								
Question		Question		MARKS	CL	со	РО	
no		Question		WAKKS	CL	CO	PU	
1								
2								
3								
4								

Note: Internal Choice may be given in each CO at the same cognitive level (CL).

MODEL QUESTION PAPER (CIE)

Test/Date and Time	Semester/year	Course/Course Code	Max Marks	
Ex: I test/6 th weak	III SEM	Computer Organization	20	
of sem 10-11 AM	Year: 2015-16	Course code:15CS32T		

Name of Course coordinator:

Units:1,2 Co: 1,2

Note: Answer all questions

Questio n no	Question		CL	C O	РО
1	Describe the role of MAR, MDR, PC and IR.	(5)	R	1	1,2
2	Explain the role of buffer registers	(5)	R	1	1,2
3	Describe the Big-endian and Little-endian addressability	(5)	U	2	1,2
4	Explain straight line sequencing OR Describe register and absolute addressing mode.	(5)	U	2	1,2

Format for Student Activity Assessment

DIMENSION	Unsatisfactory 1	Developing 2	Satisfactory 3	Good 4	Exemplary 5	Score
Collection of data	Does not collect any information relating to the topic	Collects very limited information; some relate to the topic	Collects some basic information; refer to the topic	Collects relevant information; concerned to the topic	Collects a great deal of information; all refer to the topic	3
Fulfill team's roles & duties	Does not perform any duties assigned to the team role	Performs very little duties	Performs nearly all duties	Performs all duties	Performs all duties of assigned team roles with presentation	4
Shares work equally	Always relies on others to do the work	Rarely does the assigned work; often needs reminding	Usually does the assigned work; rarely needs reminding	Does the assigned job without having to be reminded.	Always does the assigned work without having to be reminded and on given time frame	3
Listen to other Team mates	Is always talking; never allows anyone else to speak	Usually does most of the talking; rarely allows others to speak	Listens, but sometimes talk too much	Listens and contributes to the relevant topic	Listens and contributes precisely to the relevant topic and exhibit leadership qualities	3
					TOTAL	13/4=3.25=4

^{*}All student activities should be done in a group of 4-5 students with a team leader.

Diploma in Computer science & Engineering

III- Semester

Course Title: Computer Organization

Time: 3 Hours Max Marks: 100

PART-A

Answer any SIX questions. Each carries 5 marks.

5X6=30 Marks

- 1) Explain the basic functional unit of a Computer.
- 2) Describe register and absolute addressing mode.
- 3) Write a note on register transfers.
- 4) Explain the concept of micro programmed control.
- 5) Explain how to enable and disable an interrupt.
- 6) Explain the use of PCI bus in the computer system.
- 7) Explain the Double-data-rate SDRAM concept.
- 8) Explain the concept of flash drives.
- 9) Compare super scalar verses VLIW.

PART-B

Answer any <u>SEVEN</u> full questions each carries 10 marks.

10X7=70 Marks

- 1. Explain with examples one-address, two-address and three-address instruction types.
- 2. Describe program-controlled I/O operation.
- 3. Illustrate with diagram arithmetic and logic operation.
- 4. Describe the working of DMA.
- 5. Explain the serial port interface.
- 6. Explain the operation asynchronous DRAM.
- 7. Describe the features of PROM, EPROM and EEPROM.
- 8. Illustrate with diagram memory hierarchy with respect to speed, size and cost.
- 9. Explain CISC scalar and RISC scalar processor.
- 10. Describe Arithmetic, Instruction and processor pipelining.

MODEL QUESTION BANK

Diploma in Computer Science & Engineering

III Semester

Course Title: Computer Organization

CO	Question	CL	Marks		
	Explain the basic functional unit of a Computer.	R			
	Describe the role of MAR, MDR, PC and IR.	R			
Ι	Explain in brief the basic operation concept between processor and the memory.	R	05		
	Explain the significance of single bus structure.	R			
	Explain the role of buffer registers.	R			
	Explain byte addressability.	U			
	Describe the Big-endian and Little-endian addressability.	U			
	Explain the basic memory operation.	U			
	Explain straight line sequencing.	U	05		
	Write a note on conditional codes.	U			
	Describe register and absolute addressing mode.	U			
	Write a note on relative addressing.	U			
II	Explain with examples one-address, two-address and three-address instruction types.	U			
	Illustrate Branching concept with Example.	A			
	Illustrate with examples Indirect addressing.	A			
	Describe Indexed addressing with examples.	A			
	Explain different assembler directives.	U			
	Explain the execution of assembly language program.	U			
	Describe program controlled I/O operation.	U			
	Explain the significance of auto-increment and auto-decrement addressing mode	U			
	Explain the different phases for instruction execution.	U			
	Write a note on register transfers.	U			
	Explain how a complete instruction is executed.	U	05		
	Write a note on Hardwired control unit.	U			
	Explain the concept of micro programmed control unit.	U			
III	Explain single bus organization.	U			
	Illustrate with diagram arithmetic and logic operation.	U			
	Describe fetching a word from memory.	U	10		
	Explain multiple bus organization.	U			
	With block diagram explain complete processor.	U			
	Explain the memory-mapped I/O concept.	U			
	Illustrate program controlled I/O.	U			
	Write a note on interrupts.	U			
	Explain how to enable and disable an interrupts.	U			
	Write a note on vectored interrupts.	U			
	Explain the exception concepts with respect to I/O.	U	05		

	Explain bus arbitration logic.	U	
IV	List the activities of an I/O interface.	U	
	Explain the use of PCI bus in the computer system.	A	
	Write a note on SCSI bus.	A	
	Explain the universal serial bus concept.	U	
	Illustrate with examples interrupt service routine.	A	
	Explain implementation of prioritized interrupts.	U	
	Describe the working of DMA.	U	10
	Explain synchronous and asynchronous bus.	U	
	Explain with example parallel port connectivity.	A	
	Explain serial port interface.	A	
V	Illustrate how to implement a static RAM memory cell.	A	05
	Illustrate how to implement CMOS memory.	A	
	Explain the Double-data-rate SDRAM concept.	U	
	Write a note on Ram bus memory.	U	
	Explain the configuration of ROM cell.	U	
	Write a note on flash memory.	A	
	Explain the concept of flash drives.	A	
	Explain the significance of cache memory.	U	
	Explain the internal organization of memory chips.	U	
	Explain the operation of asynchronous DRAM.	U	
	Explain the operation of synchronous DRAM.	U	
	Explain static and dynamic memory system.	U	10
	Explain the use of memory controller with diagram.	A	
	Describe types of ROM	A	
	Illustrate with diagram memory hierarchy with respect to speed, size and cost	U	
	Explain the working of cache memory operations.	U	
VI	Explain Architecture of RISC machine.	U	
	Compare CISC verses RISC.	U	
	Explain super scalar processor.	U	
	Compare super scalar verses VLIW.	U	05
	List advantages of multi core architecture.	U	
	List the applications of multi core architecture.	A	
	Explain Non-linear pipeline processor.	U	
	Explain VLIW Architecture.	U	
	Explain CISC scalar and RISC scalar processor.	U	
	With neat diagram explain Multi core architecture.	U	10
	Explain Asynchronous and synchronous model of linear pipeline processor.	U	
	Describe Arithmetic, Instruction and processor pipelining.	U	

