Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Course Title: INDU CONT	STRIAL DRIVES AND TROL	Course Code	: 1 5EE61T		
Semester	: VI	Course Group	: Core		
Teaching Scheme (L:T:I	P) : 4:0:0 (in Hours)	Credits	: 4 Credits		
Type of course	:Lecture +Assignments	Total Contact Hours	: 52		
CIE	: 25 Marks	SEE	: 100 Marks		
Programme: Diploma in Electrical and Electronics Engg.					

Pre-requisites	: DC and AC Electrical Machines, Power Electronics
Course Objectives	: To introduce the concept of selection, Justification and Utilization of Electric drives

COURSE TOPICS:

Г

Unit No	Unit Name	Hours
1	Introduction to Electrical Drives	06
2	Industrial Process & Drives	10
3	Control System	07
4	Development of Control Circuit	09
5	Computer Based Industrial Control	08
6	Electric Traction	12
	Total	52

Course Outcomes:

On successful completion of the course, the student will be able to:

- 1. Understand the basics of Electric drives
- 2. Explain industrial processes and selection of drives
- 3. Differentiate various control systems
- 4. Develop motor control circuits
- 5. Illustrate computer based industrial control
- 6. Describe Electric traction

Composition of Educational Components

Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's Taxonomy) such as:

Sl. No.	Educational Component	Weightage (%)	Total Marks (Out of 145)
1	Remembering	10	15
2	Understanding	48	70
3	Application/ Analysis	42	60
	Total	100	145

Course Outcome linkage to Cognitive Level

	Course Outcome	CL	Linked PO	Teaching Hrs
CO1	Understand the basics of Electric drives	R/U	2, 10	6 Hours
CO2	Explain industrial processes and selection of drives	U/A	2,4, 10	10Hours
CO3	Differentiate various control systems	R/U	2, 10	7 Hours
CO4	Develop motor control circuits	U/A	2,3,10	9 Hours
C05	Illustrate computer based industrial control	U/A	2, 4, 10	08Hours
C06	Describe Electric traction	R/U/A	2, 5,6,10	12 Hours
		Total sess	sions	52

Cognitive Level Legend: R- Remember, U- Understand, A- Application

Course Content and Blue Print of Marks for SEE:

Unit No	Unit Name	Hour	IT Max. Questions to be set for (5marks) PART - A PART - B			A Questions to be set for (5marks) PART - A		Marks weightage		
					U	A	R	U	Α	(70)
1	Understand the basics of Electric drives	6	20	1	0	0	0.5	1	0	14
2	Explain industrial processes and selection of drives	10	30	0	1	1	0	1	1	21
3	Differentiate various control systems	7	20	1	0	0	0.5	1	0	14
4	Develop motor control circuits	9	25	0	1	1	0	1	0.5	17
5	Illustrate computer based industrial control	8	20	0	1	0	0	1	0.5	14
6	Describe Electric traction	12	30	1	0	1	1	1	01	21
	Total	52	145	9 (45 Marks)		10 (100Marks)			100	

Course-PO Attainment Matrix

Course		Programme Outcomes								
	1	2	3	4	5	6	7	8	9	10
Industrial Drives and Control	-	3	1	2	1	1	0	0	0	3

Level 3- Highly Addressed, Level 2-Moderately Addressed, Level 1-Low Addressed. Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO. If \geq 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3 If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2 If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1 If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

Course Content:

Unit –I INTRODUCTION TO ELECTRICAL DRIVES (6 Hrs)

Concept of electric drive, Power modulators, Motors used in drives, types of loads choice of drives, classification of drives Multi quadrant operation of Drives.

Unit –II

INDUSTRIAL PROCESS & DRIVES (10 Hrs)

Process flow diagram of paper mill, cement mill, sugar mill, steel mill, Hoists and cranes, centrifugal pumps and compressors, solar powered pump drives, selection of drives for the above processes

Unit –III

CONTROL SYSTEM (7 Hrs)

Open and closed loop systems with examples, Temperature control and water level control, automatic control, speed control of Induction motor, Pilot devices

Unit –IV DEVELOPMENT OF CONTROL CIRCUIT (9 Hrs)

Develop ladder diagram for control from one place, remote control, interlocking, DOL starter, Forward and reverse motoring, Automatic star delta starter, 3 speed motor Control, Automatic Plugging, Jogging and sequence speed control, Motor control centre, Thyristor controlled DC Motor Drive and Induction motor drive.

Unit –V

COMPUTER BASED INDUSTRIAL CONTROL (8 Hrs)

Concept of Digital control, CIM, Hierarchical levels Of CIM, Microcontroller based DC Motor speed control, Fuzzy logic, Process control in thermal plant and cement plant

Unit –VI ELECTRIC TRACTION (12 Hrs)

Introduction to electric traction, systems of Traction, speed time curve, derivation of maximum speed ,Tractive effort, nature of traction load , requirements of traction drives , Drives in traction , electric braking, current collection, Train lighting system

Reference Books:

- 1. Fundamentals of electrical drives by G K DUBEY
- 2. Computer based Industrial control by Krishnakant
- 3. Electrical drives by
- 4. Mechatronics by
- 5. Electrical estimating and costing
- K B Raina and S K Bhattacharya

Vedamsubrahmanyam

- 6. Fundamentals of control
- 7. Digital control

McIntyre and loose M Gopal

W B Bolton

- 8. 8051 micro controller and applications- Mazdi&Mazdi
- 9. Utilization of Electrical Energy R K Rajput

e-Resources:

www.siemens.com/paperwww.siemens.com/cemet www.siemens.com/metal www.siemens.com/sugar www.abb.com/industries www.flsmidth.com www.flsmidth.com www.krupp polysius.com www.metso.com www.metso.com www.voith.paper.com www.siemens.com/ www.siemens.com/drives www.siemens.com/drives www.abb.com/drives www.siemens.com/mobilit www.bombardier.com www.getransportation.com

Course Delivery:

The Course will be delivered through lectures, classroom interaction, animations, group discussion, exercises and student activities, assignments.

Course Assessment and Evaluation:

	What		To Whom	Frequency	Max Marks	Evidence Collected	Course Outcom es	
	CIE (Conti nuous Interna	I A Tests	Student	Three IA tests for Theory: (Average marks of Three Tests to be computed).	20	Blue Books	1 to 6	
Dire ct Asse ssme nt	l Evalua tion)	Student Activity	S	S	Student Activity	05	Report of 2 pages	1 to 6
				TOTAL	25			
	SEE (Semes ter End Exami nation)	End Exam	Stud ents	End Of the Course	100	Answer Scripts at BTE	1 to 6	
Indi rect Asse ssme nt	Student Feedback on course		Stud	Middle Of The Course	Feed Back Forms		1 to 6	
	End Of Course Survey		ents	End Of The Course	Questionnaires		1 to 6	

*CIE – Continuous Internal Evaluation *SEE – Semester End Examination

Note: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

Note to IA verifier: The following documents to be verified by CIE verifier at the end of semester

- 1. Blue books (20 marks)
- 2. Student suggested activities report for 5 marks evaluated through appropriate rubrics.
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

Course Contents with Lecture Schedule:

Lesson No./ Session No.	Contents	Duration
Unit I	Introduction to Electrical drives	6 Hours
1.	Draw the block diagram of an Electric drive and explain the function of each Block List advantages of electric drives Ref:1	01 Hour
2.	List and explain the functions of various power modulators Ref:1	01 Hour
3.	Describe briefly the source employed in electric drives Describe briefly types of motors employed in drives	01 Hour
4.	Analyse the different types of loads Explain classes of Motor duty Ref:3	01 Hour
5.	Choice of electric drives Compare AC drives with DC drives Requirement of variable speed drive Ref1,3	01 Hour
6.	Classify drives and explain a) Group Drive b) Individual Drive c) Multi motor drive Explain Four – quadrant (MULTIQUADRANT) operation of electric drive Ref 2,3	01 Hour
UNIT II	Industrial Process & Drives	10Hours
7.	Draw the process flow diagram of pulp & paper mill & explain various Process Ref 3	
8.	Select a suitable motor and drive in Paper mill and justify the same. Ref 3	01 Hour
9.	Draw the process flow diagram of cement mill and explain various processes Ref 3	01 Hour
10.	Select a suitable motor and drive in cement mill and justify the selection Ref 3	01 Hour
11.	Draw the process flow diagram of sugar mill [sugar cane] and explain various processes involved Ref 3	01 Hour
12.	Select a suitable motor and drive in sugar mill and justify the selection Ref 3	01 Hour
13.	Draw the process flow diagram of steel mill and explain process involved Ref 3	01 Hour
14.	Select a suitable motor and drive in steel mills and justify the selection reverse hot rolling reverse cold rolling, continuous hot	01 Hour

	rolling continuous cold rolling Ref 3	
15.	Select a suitable motor & drive for electric hoisting crane and justify the selectionSelect a suitable motor and drive for large centrifugal pump and justify the selection. Select a suitable motor and drive for large high speed compressor and justify the SelectionRef 3	01 Hour
16.	Describe with a block diagram solar powered pump drives Ref:1	01 Hour
UNIT III	CONTROL SYSTEM	7 Hours
17.	Define open loop and closed loop system Explain open loop and closed loop system with a block diagram Differentiate open loop and closed loop system Ref:4	01 Hour
18.	Explain-temperature control, water level control Ref:4	01 hour
19.	Describe automatic control system with example Describe speed control of induction motor with example Ref 4	01 Hour
20.	Draw the symbols used in motor control circuit-on and off Pushbutton, contactor, coil, limit switch, time delay relay, &float Switch, flow switch. Ref 5	01 Hour
21.	Describe the operation of Pilot devices with diagram – float switch, pressure switch ,limit switch, Ref 6	01 Hour
22.	Describe the operation of Pilot devices with diagram –flow switch, thermostat Ref 6	01 Hour
23.	Draw the diagram and explain electromagnetic contactor, Draw the diagram and explain overload relays Ref 5	01 Hour
UNIT IV	DEVELOPMENT OF CONTROL CIRCUIT	9 Hours
24.	Describe steps involved in developing ladder diagram Ref 5,6	01 Hour
25.	Draw schematic and ladder diagram of 3phase motor control circuit Ref 5	01 Hour
26.	Define two wire and three wire control, describe expanding an existing circuit taking an example Ref:6	01 Hour
27.	Develop control circuits- 1. Control from one location 2- Control from different location 3-pushbutton interlocking, 4-DOL starter Ref:5	01 Hour
28.	Develop control circuit of FORWARD and REVERESE motor control, Develop control circuit of Fully automatic star delta starter Ref 5,6	01 Hour

29	Develop control circuit of Three speed motor control,	01 Hour
	Develop control circuit of Automatic plugging control Ref 6	
30	Develop control circuit of Jogging control	01 Hour
	Develop control circuit of sequence speed motor control Ref 6	
	Define Motor control centre-draw the layout of plant level power	01 Hour
31.	distribution and explain Ref:1	01 11001
	Draw the block diagram of thyristor converter controlled DC motor	
	drive and explain it	01.11
32.	Draw the block discrement of CTO investor controlled induction motor	01 Hour
	drive and explain it Pof	
	drive and explain it Kell	
V	COMDUTED BASED INDUSTRIAL CONTROL	08Hours
V	COMPUTER BASED INDUSTRIAL CONTROL	
	Introduction to digital control	01 Hour
33.	Draw and explain Basic structure of computer controlled system	
	Ref:7	
	Draw the block diagram and explain computer integrated	01 Hour
34.	manufacturing system	
	Ref:7	
	Draw the block diagram and explain centralised computer	01 Hour
35	control system	
	Draw the block diagram of and explain Distributed digital	
	control system Ref:2	
	Draw the block diagram and explain Hierarchical control system	01 Hour
36.	Draw the block diagram of and explain Intelligent control	
	system Ref:2	
	Explain with block diagram configuration of digital firing scheme	01 Hour
37	Draw the block diagram of Micro controller based DC motor speed	
57.	control and explain Ref:8	
	Explain fuzzy logic architecture with block diagram Ref:2	
	Drow and avalain application of microprocessors (computers in	01 Hour
	electrical drives control of Switch reluctance motors	01 11001
20	ciccultar arrives control of Switch relactance motors	
50.	Draw and explain application of microprocessors / computers in	
	electrical drives control of permanent magnet brushless dc motors	
		01.11
30	Draw the block diagram of thermal power plant automation system	01 Hour
39.	and explain it Ref.2	
	Draw the block diagram of clinker burning control in a cement	01 Hour
40.	plant and explain it Ref:2	0111001
UNIT VI	ELECTRIC TRACTION	12 Hours
	List the different systems of treation	
/1	Mention the importance of electric traction	01 Hour
+1.	List advantages and disadvantages of Electric TractionRef.0	
	Ense advantages and disadvantages of Electric Hactonice.	

42.	Draw the block diagram and Explain a)25 KV, 50 Hz, AC single phase to 3 phase AC b) 25 KV, 50 Hz, AC single phase to DC c) Diesel electric traction d) DC traction at 750 v and 1500 v DC Ref:2	01 Hour
43.	Define and explain speed time curve Define the terms- max speed, scheduled speed, average speed, acceleration, retardation. Derive an expression for maximum speed Ref:9	01 Hour
44.	Problems on maximum speed Ref:9	01 Hour
45.	Draw and compare speed time curve for a)City: Service or Urban service b) Sub Urban Service c) Main Line Service Ref:9	01 Hour
46.	Define tractive effort Explain Total tractive effort with respect to acceleration, gradient, train resistance.[FT=FA+FR±FG] Ref:9	01 Hour
47.	Explain the nature of traction load List the important requirements of traction drives Discuss the various motor used in traction-d.c.series motor, 3phase sq cage-Induction motor, permanent magnet synchronous motorRef:2	01 Hour
48.	Define electric braking, List the advantages and disadvantages of electric braking, List the types of Electric braking Explain pulggingRef:9	01 Hour
49.	Describe with diagram how Rheostatic or dynamic braking is obtained with a) DC Series Motor b) 3 Phase squirrel cage /slip ring Induction Motor] Describe with diagram how regenerative braking is obtained with a) DC Series Motor b) 3 Phase Induction Motor [squirrel cage induction motor Ref:9	01 Hour
50.	Describe chopper controlled drive for D.C. motors with composite braking for D.C Traction system Ref:2 Describe PWM voltage source inverter [VSI] induction motor drive for A.C. Traction system. Ref:2	01 Hour
51.	Explain with diagram current collection through single arm pantograph collector. (Faiveley). ref-G.K.Dubey Explain with diagram current collection through 3 rd rail or conductor's rail sys Ref:2	01 Hour
52.	Describe the train lighting –A) auxiliary converter system [electric trains] b) alternator[axle mounted] Ref:2	01 Hour

Student Activity (any one to be submitted with 3 pages self HAND WRITTEN report

- 1) Visit any industry/ process industry and prepare a report on drives used .
- 2) Visit any process industry and prepare a report on control of drives used
- 3) Collect information on Practical train lighting system& current collection system
- 4) Study various power supply transmission systems used in traction
- 5) Collect information on automatic control systems used in industries

Dimen sion	Scale				Students score (Group of five students)					
	1 Unsatisfactory	2 Developing	3 Satisfactory	4 Good	5 Exemplary	1	2	3	4	5
1	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	3				
2	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2				
3	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	5				
4	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	4				
Note: Concerned faculty (Course coordinator) must devise appropriate rubrics/criteria for assessing Student activity for 5 marks One activity on any one CO (course outcome) may be given to a group of FIVE students						14/4 =3.5 ≈4				
	Grand Average/Total									

MODEL OF RUBRICS / CRITERIA FOR ASSESSING STUDENT ACTIVITY (Course Coordinator)

Example only: MODEL OF RUBRICS / CRITERIA FOR ASSESSING ST	UDENT ACTIVITY-
Task given- Industrial visit and report writing	

Dimensi on	Scale				Students scor (Five students			e 5)	
	1 Unsatisfactory	2 Developing	3 Satisfactory	4 Good	5 Exemplary	1	2	3	45
1.Organi sation	Has not included relevant info	Has included few relev ant info	Has included some relev ant info	Has included many relev ant info	Has included all relevant info needed	3			
2. Fulfill team's roles & duties	Does not perform any duties assigned	Performs very little duties	Performs partial duties	Performs nearly all duties	Performs all duties of assigned team roles	2			
3.Conclu sion	Poor	Less Effective	Partially effective	Summarise s but not exact.	Most Effective	5			
4.Conve nsions	Frequent Error	More Error	Some Error	Occasional Error	No Error	4			
					Total marks	14/4=3.5 ≈4			

	FORMAT OF I A TEST QUESTION PAPER (CIE)							
Test/D Ti	ate and ime	Semester/year	Course/Course C	Max Marks				
Ex: I test/6 th week		VI SEM	INDUSTRIAL DRIVES AND CONTROL		20			
01 Selli	10-117111	Year:						
Name of 0	Name of Course coordinator :							
Units:(CO's:							
Questio		Question		MARKS	CI	С	ΡΩ	
n no		Question		MARKS	CL	0	10	
1								
2								
3								
4								

Note: Internal Choice may be given in each CO at the same cognitive level (CL).

MODEL QUESTION PAPER (CIE)

Test/Date	and Time	Semester/year	Course/Course Code		Ma	x Marks
1^{st} Test/ 6 th week,		VI SEM, E & E Engg	INDUSTRIAL DRIVES AND CONTROL		20	
9 Feb 16, 1	0-11 AM	Year: 2015-16	Course code:15EE61T			
Name of C	ourse coordir	nator :				
Units Cove	ered :1 and 2					
Course Out	tcomes : 1 and	d 2				
Instruction	n :(1). Answe	r all questions (1	I	T
Question		Question		CL	CO	РО
No.		Question		-	00	10
1	List adv	antages of electric drives 2	Marks	R	CO1	2
	or					
	List	the different types of loads				
2	Evoluin Gro	ΙI	COL	2		
2	or Explain Gloup Drived multi motor drive 4 marks				COI	2
	or Explain Four – quadrant operation of electric drives					
3	Draw the pr	ocess flow diagram of pul	p making & explain various	U	CO2	2,10
	Process 6 m	narks				
	or Descri	be with a block diagram so	olar powered pump drives			
4	Justify s	selection of motors in Pap	er mill 8 marks	Α	CO2	4,10
	Or	•				
	Justify the selection of motor for steel mills					
CL:	Cognitive Le	vel R-Remember U-Unde	erstand A-Application PO [·] P	rograr	n Outeo	mes

Sl. No	Educational Component	Weightage (%)	Total Marks (Out of 20)
1	Remembering	10	2
2	Understanding	48	10
3	Application	42	8
Total		100	20

Model QUESTION Paper BANK:

Course Title: INDUSTRIAL DRIVES AND CONTROL Course Code: 15EE33T

CO1- Understand the basics of Electric drives

Unit 1 -Introduction to Electrical drives

Cognitive Level: REMEMBER

- 1. List advantages of electric drives
- 2. List various power modulators
- 3. List the different types of loads
- 4. List the requirement of variable speed drive

Cognitive Level: UNDERSTAND

- 1. Draw the block diagram of an Electric drive and explain the function of eachBlock
- 2. Explain the functions of various power modulators
- 3. Describe briefly the source employed in electric drives
- 4. Describe briefly types of motorsemployed in drives
- 5. Explain classes of Motor duty
- 6. Describe AC drives and DC drives
- 7. **Explain** a)) Group Driveb) Individual Drive c) Multi motor drive
- 8. Explain Four quadrant operation of electric drives

CO2- Explain industrial processes and selection of drives Unit II – INDUSTRIAL PROCESS AND DRIVES

Cognitive Level: UNDERSTAND

- 1. Draw the process flow diagram of **pulp** making & explain various Process
- 2. Draw the process flow diagram of paper mill & explain various Process
- 3. Draw the process flow diagram of cement mill and explain various processes
- 4. Draw the process flow diagram of steel mill and explain process involved
- 5. Describe with a block diagram solar powered pump drives

Cognitive Level: APPLICATION

- 1. Justify selection of motors in Paper mill.
- 2. Justify selection of motors in cement mill.
- 3. Justify selection of motors in sugar mill
- 4. Justify the selection of motor for reverse hot rolling
- 5. Justify the selection of motor for reverse cold rolling,

- 6. Justify the selection of motor forcontinuous hot rolling
- 7. Justify the selection of motor forcontinuous cold rolling
- 8. Justify the selection of motor for **steel** mills
- 9. Justify the selection of motorforelectric hoisting crane
- 10. Justify the selection of motorfor electric centrifugal pump
- 11. Justify the selection of motorfor high speed compressor

CO3- Differentiate various control systems

Unit III -CONTROL SYSTEM

Cognitive Level: REMEMBER

- 1. Define open loop and closed loop system
- 2. Draw the symbols used in motor control circuit-on and off Pushbutton, contactor, coil, limit switch, time delay relay, &floatSwitch, flow switch.

Cognitive Level: UNDERSTAND

- 1. Explain open loop control system with a block diagram
- 2. Explain closed loop control system with a block diagram
- 3. List differences between open loop and closed loop system
- 4. Explain temperature control with a neat diagram
- 5. Explain water level control
- 6. Describe automatic control system with example
- 7. Describe speed control of induction motor with example
- 8. Describe the operation of float switchwith diagram
- 9. Describe the operation of pressure switch with diagram
- 10. Describe the operation of limit switch with diagram
- 11. Describe the operation of thermostat with diagram
- 12. Draw the diagram and explain electromagnetic contactor
- 13. Draw the diagram and explain overload relays

CO4- Develop motor control circuits

Unit IV - DEVELOPMENT OF CONTROL CIRCUIT

Cognitive Level: UNDERSTAND

- 1. Draw schematic and ladder diagram of 3phase motor control circuit
- 2. Describe steps involved in developing ladder diagram
- 3. Define two wire and three wire control
- 4. Describe expanding an existing circuit taking anexample
- 5. Define Motor control centre-draw the layout of plant level power distribution and explain
- 6. Draw the block diagram of thyristor converter controlled DC motor driveand explain it.
- 7. Draw the block diagram of GTO inverter controlled induction motor drive and explain it

Cognitive Level: APPLICATION

- 1. Develop control circuits for Control of motor from one location
- 2. Develop control circuits for Control of motor from different location
- 3. Control of motor with pushbutton interlocking
- 4. Develop control circuits for DOL starter
- 5. Develop control circuit of FORWARD and REVERESE motor control,
- 6. Develop control circuit of Fully automatic star delta starter
- 7. Develop control circuit of Three speed motor control,
- 8. Develop control circuit of Automatic plugging control
- 9. Develop control circuit of Jogging control
- **10.** Develop control circuit of sequence speed motor control

CO5- Illustrate computer based industrial control Unit V - COMPUTER BASED INDUSTRIAL CONTROL

Cognitive Level: UNDERSTAND

- 1. Draw the Basic structure of computer based system and explain
- 2. Draw the block diagram and explain computer integrated manufacturing
- 3. Draw the block diagram and explain centralised computer control system
- 4. Draw the block diagram of and explain Distributed digital control system
- 5. Draw the block diagram and explain Hierarchial control system
- 6. Draw the block diagram of and explain Intelligent control system
- 7. Explain with block diagram configuration of digital control scheme
- 8. Draw the block diagram of Micro controller based DC motor speed control and explain
- 9. Explain fuzzy logic architecture with block diagram

Cognitive Level: APPLICATION

- 1. Draw and explain application of microprocessors / computers in electrical drives control, of Switch reluctance motors
- 2. Draw and explain application of microprocessors / computers in electrical drives control, of permanent magnet brushless dc motors
- 3. Draw the block diagram of thermal power plant automation system and explain it

CO6- Describe Electric traction

Unit VI -ELECTRIC TRACTION

Cognitive Level: REMEMBER

- 1) List the different systems of traction
- 2) Mention the importance of electric traction
- 3) List advantages and disadvantages of Electric Traction
- 4) Define the terms- max speed, scheduled speed, average speed acceleration , retardation
- 5) Define tractive effort
- 6) List the important requirements of traction drives
- 7) Define electric braking,
- 8) List the advantages and disadvantages of electric braking,
- 9) List the types of Electric braking

Cognitive Level: UNDERSTAND

- 1) Draw the block diagram and Explain 25 KV, 50 Hz, AC single phase to 3 phase AC
- 2) Draw the block diagram and Explain 25 KV, 50 Hz, AC single phase to DC
- 3) Draw the block diagram and Explain Diesel electric traction
- 4) Draw the block diagram and Explain DC traction at 750 vand1500 v DC
- 5) Define and explain speed time curve
- 6) Derive an expression for maximum speed
- 7) Draw and compare speed time curve fora)City: Service or Urban serviceb) Sub Urban Servicec) Main Line Service
- 8) Explain Total tractive effort with respect to acceleration, gradient, train resistance.[FT=FA+FR±FG]
- 9) Explain the nature of traction load
- 10) Explain pulgging
- 11) Describe with diagram how Rheostatic or dynamic braking is obtained witha) DC Series Motor
- 12) b) 3 Phase squirrel cage /slip ring Induction Motor]
- 13) Describe with diagram how regenerative braking is obtained with
 - a) DC Series Motor
 - b) 3 Phase Induction Motor [squirrel cage induction motor
- 14) Describe chopper controlled drive for D.C. motors with composite braking for D.C Traction system
- 15) Describe pwm voltage source inverter [VSI] induction motor drive for A.C.Traction system
- 16) Explain with diagram current collection through single arm pantograph(Faively)
- 17) Explain with diagram current collection through 3rd rail or conductor's rail sys
- 18) Describe the train lighting –A) auxiliary converter system [electric trains]
- 19) b) alternator[axle mounted]

20) Problems on Maximum speed .

Cognitive Level: APPLICATION

1) **Enumerate** the various motor used in traction

Model Question Paper: Code:15EE61T

VI Semester Examination Diploma in Electrical and Electronics Engg.

Time: 3 Hours Max Marks: 100

Note: i) Answer any SIX questions from PART - A. Each question caries 5 marks.

ii) Answer any SEVEN Questions from PART - B. Each question caries 10 marks.

PART – A

- 1. List the requirement of variable speed drive
- 2. Draw the process flow diagram of cement mill
- 3. Justify the selection of motorfor high speed compressor
- *4.* Draw the symbols used in motor control circuit-on and off Pushbutton, contactor coil, limit switch, time delay relay
- 5. Define Motor control centre-draw the layout of plant level power distribution and explain
- 6. Develop control circuit of Jogging control
- 7. Draw the Basic structure of computer based system and explain
- 8. List advantages and disadvantages of Electric Traction
- 9. Enumerate the various motor used in traction.

PART – B

10 a)Describe AC drives and DC drives marks	5
 b) Define open loop and closed loop system 11)Explain the functions of various power modulators 	5 marks
12Draw the process flow diagram of paper mill & explain various Process13 a) Justify the selection of motor for reverse hot rolling5 marks	10 marks
b) Justify the selection of motor for reverse cold rolling 5 marks14 a) Draw the diagram and explain electromagnetic contactor 5 marks	
 b) Draw the diagram and explain overload relays 15 Describe expanding an existing circuit taking an example 16 a) Develop control circuits for DOL starter 5 marks 	
 b) Draw the block diagram of thermal power plant automation system 5 mark Explain with block diagram configuration of digital control scheme 10 ma Describe pwm voltage source inverter [VSI] induction motor drive for A.C.Tract 10 marks 	cs rks tion system

19 A train has a schedule speed of 60 KMPH between stops 6kms apart . Find the Maximum speed when acceleration is 2 KMPHPS retardation is 3 KMPHPS . stop time is 60 seconds . Assume Trapezoidal speed time curve

