Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Course Title: Basics of Semicon	ductor Devices	Course Code	: 15EC21T
Semester	: 2	Course Group	: Core
Teaching Scheme in Hrs (L:T:P)):4:0:0	Credits	:4
Type of course	: Lecture + Assignments	Total Contact Hours	: 52
CIE	: 25 Marks	SEE	: 100 Marks

Prerequisites

Knowledge of physics and principles of electrical engineering.

Course Objectives

Acquire the fundamental knowledge and expose to the field of semiconductor theory and devices and their Applications.

Course Outcomes

On successful completion of the course, the students will be able to

- 1. Describe the properties of materials and Application of semiconductor electronics
- 2. Apply the knowledge of semiconductors to illustrate the functioning of basic electronic devices.
- 3. Demonstrate the switching and amplification Application of the semiconductor devices.
- 4. Demonstrate the control Applications using semiconductor devices.
- 5. Identify the fabrication methods of integrated circuits.
- 6. Classify and describe the semiconductor devices for special Applications.

	Course Outcome	CL	Linked PO	Teaching Hrs
CO1	Describe the properties of materials and Application of semiconductor electronics	R/U/A	1,2	11
CO2	Apply the knowledge of semiconductors to illustrate the functioning of basic electronic devices (BJT).	R/U/A	1,2,3,10	10
CO3	Demonstrate the switching and amplification Application of the semiconductor devices (FET).	R/U/A	1,2,3,10	10
CO4	Demonstrate the control Applications using semiconductor devices.	R/U/A	1,2,10	8
C05	Identify the fabrication methods of integrated circuits.	U/A	1,2,6,7,10	6
CO6	Classify and describe the semiconductor devices for special Applications.	R/U/A	1,2,6,10	7
		Τα	otal sessions	52

Course-Po Attainment Matrix

Comme		Programme Outcomes								
Course	1	2	3	4	5	6	7	8	9	10
Basics of Semiconductor Devices	3	3	2			2	1			3
Level 3- Highly Addre Method is to relate the leve If ≥40% of classroom sessio If 25 to 40% of classroom ses If 5 to 25% of classroom session If < 5% of classroom session	ssed, Leve I of PO wi ns addres essions add sions address	el 2-Mod th the nu sing a pa Idressing Iressing a sing a par	erately A mber of H rticular P(a particul particula ticular PC	ddressed nours dev D, it is con ar PO, it i r PO, it is D, it is con	, Level 1-1 oted to th nsidered t s conside considered th	Low Addr ne COs wl that PO is red that P ed that P hat PO is	ressed. hich addressed addressed PO is address D is address considered	s the give at Level 3 ssed at Lev ed at Lev not-addre	n PO. vel 2 el 1 essed.	

Sl No	Unit Name	Hour	Qu b	estion e set f SEE	s to or	Marks Weightage	Weightage (%)
			R	U	Α		
1	Introduction to Semiconductor Devices	11	10	10	10	30	21
2	Bipolar Transistors	10	05	10	15	30	20
3	Field Effect Transistor	10	05	10	15	30	20
4	Special Semiconductor Devices	8	05	05	10	20	15
5	Fabrication of Integrated ICs	6		05	10	15	12
6	Opto-semiconductor Devices	7	05	05	10	20	12
	Total	52	30	45	70	145	100

Course Content and Blue Print of Marks for SEE

Legend: R; Remember, U: Understand A: Application

Course Contents

UNIT - 1:Introduction to Semiconductor Devices Duration: 11 Hr.

Semiconductor Physics: Atomic structure, Neil Bohr's atomic theory, definition of conductors, insulators and semiconductors, energy level diagrams. Semiconductors: Classification and types, intrinsic and extrinsic, P-type and N-type semiconductors, majority and minority carriers, recombination, effect of temperature.PN junction: Formation, depletion region, barrier potential, reverse breakdowns, PN junction as diode, symbol, biasing modes, V-I characteristics, reverse saturation current, diode current equation, effect of temperature on diode current, ideal diode, basic diode ratings. Zener diode: Symbol, Principle, Zener breakdown, V-I characteristics .Application of Diodes: diode as a switch, voltage regulator.

UNIT - 2: Bipolar Transistors

Transistor Basics: Definition, formation of transistor-PNP and NPN, symbols, working principle, transistor current equation. Modes of operation: CB, CE and CC Configuration modes, input and output characteristics in CB and CE configuration, definition of R_i & R_0 , α , β , and γ relation between them, simple problems, comparison of CB, CE and CC modes. Applications: switch and amplifier in CE configuration, thermal runaway, role of heat sinks.

UNIT –3: Field Effect Transistor

FET basics: Physical structure of FET, principle of operation, P-channel and N-channel, symbols, drain and transfer characteristics, definition of pinch-off voltage, r_d , g_m , μ and their relationship, comparison of JFET and BJT, Applications of JFET.MOSFET: Types-Depletion and enhancement, P-channel and N-channel, physical structure, comparison of MOSFET and JFET. CMOS: Working principle, low-power consumption feature, limitations, inverter, Applications of CMOS, comparison with MOSFET.

UNIT - 4:Special Semiconductor Devices

Physical structure, Working principle, characteristic curves, symbol and Applications of following semiconductor devices: UJT, SCR, DIAC and TRIAC. Features of varactor, tunnel diode, Gunn diode, PIN diode, and Schottky diode.

UNIT -5: Fabrication of Integrated ICs

Definition and need of IC's, advantages and disadvantages, classification of ICs based on structure, scale of integration, function. Fabrication process of monolithic ICs. Fabrication of diode and capacitor.

UNIT- 6: Opto-semiconductor Devices

Definitions: photo emission, photoconduction, photovoltaic effect with Application examples. Features: photodiode, phototransistor, LED, Opto-coupler, LED lamps, solar cell, solar panel, LASER and MASER.

References

- 1. Principles of Electronics, RohitMehta&V K Mehta, S. Chand Publishing ISBN: 9788121924504
- 2. Electronic Devices and Circuits, David A. Bell, Oxford University Press, ISBN: 9780195693409
- 3. Fundamentals of Electrical and Electronics Engineering, B. L. Theraja, S. Chand and Company. REPRINT 2013, ISBN 8121926602.
- 4. http://www.electronics-tutorials.ws

Course Delivery

The course will be delivered through lectures, presentations and support of modern tools.

15EC21T Page 3

Duration: 07 Hr.

Duration: 08 Hr.

Duration: 10 Hr.

Duration: 10 Hr.

Duration: 06 Hr.

Course Assessment and Evaluation Scheme

Assessment Method	What		To Whom	When/Where (Frequency in the course)	Max. Marks	Evidence Collected	Course Outcomes
essment od	CIE*	IA	nts	Three Tests (Average of three tests to be computed)	20	Blue Books	1 to 6
tt Asse metho			Studer	Assignment	05	Assignment Books	1 to 6
Direc	SEE*	End		End of the Course	100	Answer Scripts at BTE	1 to 6
		Exam		Total	125		
ent	Stue Feedb cou	dent ack on irse		Middle of the Course	Nil	Feedback Forms	1 to 3 Delivery of course
Indirect Assessme	End Cot Sur	d of 1rse vey	Students	End of the Course	Nil	Questionnaires	1 to 6, Effectiveness of Delivery of Instructions & Assessment Methods

*CIE – Continuous Internal Evaluation *SEE – Semester End Examination

Note: 1. I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

2. For CIE assignment activity Information collection related to course and Quiz activity.

Dimonsion			Scale			Stuc	lents ex	am Re	g no/ Sco	ore
DIMENSION	1.Unsatisfactory	2.Developing	3.Satisfactory	4.Good	5.Exemplary	Reg1	Reg2	Reg3	Reg4	Reg5
1.Research and gather information	Does not collect information relate to topic	Collects very limited information, some relate to topic	Collects basic information, most refer to the topic	Collects more information, most refer to the topic	Collects a great deals of information, all refer to the topic	3				
2.Full fills teams roles and duties	Does not perform any duties assigned to the team role	Performs very little duties	Performs nearly all duties	Performs almost all duties	Performs all duties of assigned team roles	2				
3.Shares work equality	Always relies on others to do the work	Rarely does the assigned work, often needs reminding	Usually does the assigned work, rarely needs reminding	Always does the assigned work, rarely needs reminding.	Always does the assigned work, without needing reminding	5				
4.listen to other team mates	Is always talking, never allows anyone to else to speak	Usually does most of the talking, rarely allows others to speak	Listens, but sometimes talk too much,	Listens and talks a little more than needed.	Listens and talks a fare amount	3				
					Total Marks	13/4=3. 25=04				

Model of RUBRICS for Assessing Student Activity

Model Question Paper (CIE)

Те	est/Date and Semester/year Course/Cours					e	M	lax arks
I te	est/6 th week	II SEM		Basics of Semicond	uctor]	Devices	,	20
Tir	me:10-11 am	Year: 2015-16		Course code:1:	5EC21	Т		20
	Name of Cours	e coordinator :				CO:	1 & 2	
		Note: A	Answe	r all questions				
Q no	Question Ma rks CL						CO	РО
1	State the proper	rties of semiconductors			05	R	1	1,2
2	Describe the use of PN junction diode as switch OR List the specifications of a PN junction diode					1	1,2	
3	Explain the working principle of NPN transistor 05 U/A					2	1,2	
4	Sketch and explain the input characteristics of CE mode05U/AOR05U/AExplain the working principle of a transistor05					2	2	

	FORMAT OF I A TEST QUESTION PAPER (CIE)						
Test/Date	e and Time	Semester/year	Max Marks				
Ex: I test/6	: I test/6 th weak of I/II SEM sem 10-11 Am Year:					20	
sem 10							
Name of Co CO's:	Vame of Course coordinator : Units:						
Question		Question		MARKS	C	\mathbf{c}	PO
no		Question		IVII IIKKS	CL		FO
1							
2							
3							
4							

Note: Internal Choice may be given in each CO at the same cognitive level (CL).

Composition of Educational Components

Questions for CIE and SEE will be designed to evaluate the various educational components such as shown in the following table.

Sl. No.	Component	Weightage (%)
1	Remembering and Understanding	25
2	Applying the knowledge acquired from the course	35
3	Analysis	40

Study and Question Paper Pattern

Unit		Study	No. Questions	for End-exam
No.	Unit Name	Duration	5 Marks	10 Marks
		(Hrs.)	PART - A	PART - B
Ι	Introduction to Semiconductor Devices	11	02	02
II	Bipolar Transistor	10	02	02
III	Field Effect Transistor	10	02	02
IV	Special Semiconductor Devices	08	02	01
V	Fabrication of IC's	06	01	01
VI	Opto Semiconductor Devices	07	-	02
		53	09	10
	I otal	52	(45marks)	(100 marks)

Model Question Paper

Course Title	: Basics of Semiconductor Devices
Course Code	: 15EC21T
Semester	: Second
Time	: 3Hrs
Max. Marks	: 100
Instructions	<i>:1. Answer any</i> SIX question from Part A(5x6=30 Marks)
	2. Answer any SEVEN full questions from Part B (7x10=70 Marks)

Part A

- 1. Compare the features of insulators, conductors and semiconductors.
- 2. Define alpha & beta; evaluate beta in terms of alpha
- 3. Explain how transistor can work as a switch
- 4. Distinguish between BJT and JFETs.
- 5. Deduce the relation between g_m , r_d and μ
- 6. List the features of TRIAC.
- 7. Tabulate advantages and disadvantages of ICs.
- 8. Define Photo emissive, Photoconductive and photovoltaic effect
- 9. List the Applications of phototransistors.

Part B

- 1. (a) Explain how Zener diode can act as a voltage regulator. (5)
 - (b) Explain how diode can be used as electronic switch. (5)

- 2. (a) Describe how doping helps to increase current conduction in n-type semiconductor.(6)(b) Define barrier potential and reverse saturation current. (4)
- 3. (a) Justify the transistor current equation I_E=I_B+I_C. (4)
 (b) Compare CE and CB modes of transistors. (6)
- 4. (a) Explain the need for heat sink in electronic devices.(6) (b) Calculate the current gain in CB mode given that $I_B=10\mu A$ and $I_C=5mA.(4)$
- 5. (a) Explain the working of N-channel JFET(5)(b) Compare enhancement and depletion MOSFETS (5)
- 6. (a) List the features of CMOS (5)
 (b) Explain the working of CMOS inverter (5)
- 7. Explain the working principle of SCR and list its Applications.
- 8. (a) List the features of varactor diode. (6)
 - (b) Define valley and peak voltages as applicable to UJT. (4)
- 9. Describe the steps involved in fabrication of diode in monolithic ICs.
- 10. (a) Explain the operation of LASER
 - (b) List the features of LED bulbs.

Model Question Bank

Note: The questions in the question bank are indicative but not exhaustive.

UNIT-1

5-mark questions

Remember

- 1. State the properties of semiconductors.
- 2. Define doping, explain the atomic structure of N-type semiconductor
- 3. Define doping, explain the energy band diagram of a P-type semiconductor

Understand

- 4. Distinguish between conductor and semiconductor materials
- 5. Explain intrinsic and extrinsic semiconductors with examples
- 6. Outline the differences between N and P type semiconductors

Application

- 7. Describe the use of PN junction diode as switch
- 8. Draw and explain forward characteristics of a PN junction diode
- 9. List the specifications of a PN junction diode
- 10. Analyze the equivalent circuit of ideal diode

10-mark Questions

Remember

- 1. Describe the working of Zener diode in forward and reverse bias
- 2. Describe how dopants can increase the current conduction in semiconductors.
- 3. Describe the formation of PN junction, depletion region and potential barrier

Understand

- 1. Explain the effect of temperature on barrier voltage in PN junction diode.
- 2. (a) Explain PN junction diode as a switch
- (b) Describe the effect of temperature on reverse saturation current in PN junction.
- 3. (a) Show how Zener diode can be used as voltage regulator
 - (b) Distinguish between Zener breakdown and Avalanche breakdown.

Application

- 4. Sketch V-I characteristics of PN junction diode with circuit in both FB and RB modes.
- 5. (a) Sketch V-I characteristics of Zener diode in FB and RB bias modes.(b) Outline the relevance of RB mode in Zener diode.

UNIT-2

5-mark questions

Remember

- 1. List the constructional features of an NPN transistor
- 2. Define alpha and beta, deduce the relation between them.
- 3. List the constructional features of an PNP transistor

Understand

1. Explain the working principle of NPN/PNP transistor

Application

- 2. Write a note on transistor current equation.
- 3. Base width of transistor is thin and collector is thick, justify.
- 4. Emitter is heavily doped and base is lightly doped, justify.
- 5. Sketch and explain the input characteristics of CE mode
- 6. Sketch and explain the output characteristics of CE mode
- 7. Justify the need for heat sink.

10-mark Questions

Remember

- 1. (a) List the physical features of a transistor.
 - (b) Explain the working principle of a transistor

Understand

- 1. Compare CE, CB and CC modes of a transistor
- 2. (a) Explain the terms cut-off, saturation and active region of a transistor and their relevance.
 - (b) Write a note on transistor as emitter follower.

Application

- 3. Sketch and explain the input and output characteristics of CE mode
- 4. Justify how transistor can act as a switch with support of circuit and waveforms
- 5. Justify how transistor can act as an amplifier with support of circuit and waveforms in CE mode

UNIT-3 5-mark Questions

Remember

- 1. Define JFET parameters.
- 2. List the Applications of JFET and SCR
- 3. List the constructional features of JFET

Understand

- 1. Compare BJT and JFET.
- 2. Explain CMOSFET as an inverter
- 3. Compare the enhancement and depletion modes of MOSFET

Application

- 4. List the advantages of JFET over BJT.
- 5. Write the Applications of CMOS.
- 6. List the features of CMOS
- 7. Correlate the JFET parameters r_d , g_m and μ .

10-mark Questions

Understand

1. Explain the concept of field effect and analyse how it controls current in JFET. **Application**

2. (a) Sketch the symbols of JFET (n and p channels), MOSFET (enhancement and depletion) and CMO

(b) JFET is a voltage controlled device, justify.

- 3. Sketch and discuss the drain characteristics of N- channel JFET
- 4. Sketch and discuss the transfer characteristics of a JFET
- 5. Construct and explain enhancement type MOSFET

UNIT-4 5-mark Questions

Remember

- 1. List the Applications of UJT and varactor diode
- 2. List the Applications of SCR and TRIAC
- 3. List the Applications of PIN diode and Gunn diode
- 4. List the features of GUNN diode
- 5. List the features of Schottky diode

Understand

- 1. Describe the construction of UJT
- 2. Describe the construction of SCR
- 3. Explain holding and latching currents of SCR
- 4. Explain the operation of UJT

Application

- 5. Write the equivalent circuit of UJT. Define intrinsic stand-off ratio.
- 6. Sketch and discuss the VI characteristics of DIAC
- 7. Write the features of Varactor diode

10-mark Questions

Understand

- 1. Discuss the characteristics of TRIAC
- 2. Explain the constructional features and the operation of DIAC
- 3. Discuss the V-I characteristics of SCR

Application

- 4. Sketch and Discuss The V-I Characteristics Of UJT
- 5. Describe the construction and Explain the operation of TRIAC

UNIT-5

5-mark Questions

Remember

- 1. List the advantages of ICs
- 2. Define SSI, MSI, LSI and VLSI
- 3. List the classification of ICs by structure

Understand

- 1. Classify Integrated circuits based on scale of integration
- 2. Compare ICs with discrete components

10-mark Questions

Remember

1. List the advantages and disadvantages of ICs

Understand

- 1. Describe the steps in fabricating monolithic ICs with diagrams
- 2. Describe the fabrication of capacitor and diode with diagrams

UNIT-6 5-mark Questions

Remember

- 1. List the Applications and advantages of LED
- 2. List the Applications of phototransistor and photo diodes.

Understand

1. Explain the terms Photo emissive, Photoconductive and photovoltaic effect

Application

- 2. Write the advantages of Opto-couplers
- 3. Write a short note on solar cell

10-mark Questions

Remember

1. List the features of LASER and MASER.

Understand

1. Describe the construction and operation of LED

End