Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Course Title: Electronic Measu Instrumentation	rements and	Course Code	: 15EC34T
Semester	: Third	Credits	: 4
Teaching Scheme in Hrs (L:T:P)	: 4:0:0	Course Group	: Core
Type of course	: Lecture + Quiz	Total Contact Hours	: 52
CIE	: 25 Marks	SEE	: 100 Marks

Prerequisites

Basics of electrical and electronics engineering.

Course Objectives

- 1. Familiarisation of the basic terms, errors and standards in electronic measurements.
- 2. Discussion of the working principles, uses of different types of instruments in testing procedures.
- 3. To understand the working principles of commonly used sensors ,signal conditioners and display systems used in electronic instrumentation
- 4. Familiarisation of general principles of equipment maintenance and protection.

Course Outcomes

On successful completion of the course, the students will be able to attain the following COs

	Course Outcome	CL	Linked PO	Teaching Hrs
CO1	Understand types of measurement, errors, statistical analysis and bridge method of measurement.	<i>R/U/A</i>	1,2,3,10	07
CO2	Analyze selection criteria, operation and applications of transducers.	<i>R/U/A</i>	1,2,3,10	08
СО3	Understand the operation of PMMC meter, dynamometer, electronic voltmeter and their calibration, conversions.	U/A	1,2,3,10	11
CO4	Understand and analyze different types of Oscilloscopes, function generator and spectrum analyzer.	U/A	1,2,3,5,10	10
C05	Understand, analyze and working of digital meters, conversion, applications and microprocessor based instruments.	U/A	1,2,3,5,10	10
C06	Understand and analyze the prevalent troubleshooting procedures and tools.	U/A	1,2,3,5,6,7,10	06
		Τ	otal sessions	52

Course-PO attainment matrix

Course	Programme Outcomes									
Course	1	2	3	4	5	6	7	8	9	10
Electronic Instrumentation & Measurements3333113						3				
Level 3- Highly Addressed, Level 2 Method is to relate the level of PO with t If ≥40% of classroom sessions addressing If 25 to 40% of classroom sessions addres If 5 to 25% of classroom sessions addressing If < 5% of classroom sessions addressing	• Modera he numb g a partic ssing a p sing a pa a particu	tely Add ber of hou ular PO, articular rticular P ular PO, it	ressed, L urs devot it is cons PO, it is co O, it is co t is consid	evel 1-Lo red to the idered th considered onsidered dered tha	ow Addre e COs wh lat PO is a ed that P d that PO at PO is c	essed. ich address addressed a O is address is address onsidered i	the give at Level 3 sed at Le ed at Lev not-addre	n PO. vel 2 el 1 essed.		

Course content and pattern of marks for SEE

Unit	Unit Name	Teaching	Que	stions SEE	s for	Marks	Weightage
		Hours	R	U	Α		(%)
1	Basics of measurements	07	05	05	10	20	13
2	Transducers	08	05	05	10	20	16
3	Analog meters	11	10	10	10	30	21
4	Testing instruments	10	10	10	10	30	19
5	Digital meters	10	10	10	10	30	19
6	Instrument maintenance	06		05	10	15	12
	Total	52	40	45	60	145	100

Legend: R- Remember, U-Understand A-Application

Course Contents

Unit 1: Basics of measurements

Necessity of measurements-direct and indirect methods, basic terminology, dynamic characteristics of an instrument, generalized electronic measurement system, Errors-gross, systematic and random errors, sources of errors. Statistical analysis-problems involving arithmetic mean, deviation, average deviation, standard deviation. Limiting errors and probable errors. Standards-primary, secondary, working and IEEE standards. Comparison of AC and DC bridges. Principle of Wheatstone bridge and mention its applications.

Unit 2: Transducers

Necessity of electrical transducers, selection of a transducer, active, passive, analog and digital transducers. Strain gauge-principle, gauge factor, features of bonded, unbonded, wire and foil type strain gauges, load cell. Principle of working & features of capacitive transducer, Hall effect type, LVDT, thermistor, thermocouple, piezoelectric, proximity sensors, digital optical encoders & PIR sensors.

Unit 3: Analog meters

Page 2

08 Hours

11 Hours

Principle of PMMC meters, DC ammeters and voltmeters using PMMC. Shunt and series resistors, multi range voltmeters/ammeters, loading effect and voltmeter sensitivity, problems on extending range. Working of electrodynamometer type voltmeter, ammeter and wattmeter.

Electronic voltmeters: Pros and cons, working of FET input, chopper type DC amplifier voltmeter, solid-state voltmeter using op-amp, AC voltmeter using full-wave rectifier, Peak responding and true RMS voltmeters. Ohmmeters series and shunt type. Concept of Calibration of meters.

Unit 4: Testing instruments

Cathode Ray Oscilloscope-block diagram, working of CRT, concept of dual tracing.CRO probes: direct, high impedance, active and current probes. Applications of CRO-simple problems on voltage and frequency measurements. **DSO:** block diagram, advantages and applications. **Sampling oscilloscope:** advantages and applications. **Function generator:** block diagram, features and applications. Features of standard RF signal generator and sweep frequency generator. Features of distortion analyzer, wave analyzers, and spectrum analyzers.

Unit 5: Digital meters

Digital instruments - pros and cons, working of ramp and successive approximation type digital voltmeters. Automatization in digital meters-mechanism of automatic zeroing, polarity indication and auto ranging. **Electronic counters**-decade counters as an electronic counter, totalizing, frequency mode, ratio mode, period mode and time interval mode. **Digital meters**: digital frequency meter, time interval measurement, digital LCR meter, digital multimeter, microprocessor-based instruments, IEEE 488 GPIB instruments.

Unit 6: Instrument maintenance

Concepts and need of electrical grounding and shielding, shielding of cabinets, precautions in instrument usage, precautions for instrument safety. **Interference**–nature, causes, effects and prevention. Generalized trouble shooting.

References

- 1. *Electronic Measurements and Instrumentation -2nd Revised Edition*, R. K. Rajput, ISBN: 81-219-2917-2
- 2. *Electronic Measurements and Instrumentation-^{3rd} Edition*, Sanjay Talbar & Akhilesh Upadhayaya, ISBN :81-874-3335-3
- 3. *Electronic Instrumentation -3rdEdition*, Kalsi H. S., ISBN: 00-707-0206-3
- 4. *Modern Electronic Instrumentation and Measurement Techniques-2nd Edition*, Albert Helfrick & William Cooper, ISBN:81-203-0752-6

Course Delivery

The course will be delivered through lectures, presentations and support of modern tools. Student activities are off-class.

10 Hours

06 Hours

10 Hours

Course Assessment and Evaluation Scheme

Assessment Method	W	hat	To Whom	Assessment mode /Frequency /timing	Max. Marks	Evidence Collected	Course Outcomes
nt				Three tests ⁺	15	Blue Books	1 to 6
mei	CIF	ΙA		Quiz@	05	Quiz Sheet	1 to 5
assessi	CIL		Idents	Activity*	05	Activity report	1 to 6
irect a	SEE	End		End of the course	100	Answer Scripts at BTE	1 to 6
D		exam		Total	125		
ssment	Student feedback on course End of course survey		S	Middle of the Course	Nil	Feedback Forms	1 to 3 Delivery of course
Indirect asse			Student	End of the Course	Nil	Question- naires	1 to 6 Effectiveness of delivery instructions & assessment methods

Master Scheme

Legends: CIE-Continuous Internal Evaluation, SEE- Semester End-exam Evaluation

⁺ Every I.A. test shall be conducted for 15 marks. Average of three tests, by rounding off any fractional part thereof to next higher integer, shall be considered for IA.

- *Students should do activity as per the list of suggested activities/ similar activities with prior approval of the teacher. Activity process must be initiated well in advance so that it can be completed well before the end of the term.
- [@] Quiz conduction shall be evidenced with quiz sheets and it can be conducted any time before the end of the term

Questions for CIE and SEE will be designed to evaluate the various CLs as per the weightage shown in the following table.

Sl. No.	Cognitive Levels (CL)	Weightage (%)
1	Remembering	30
2	Understanding	30
3	Applying	40
	Total	100

Continuous Internal Evaluation (CIE) pattern

(i) Student Activity (5 marks)

The following student activities or similar activities can be assigned for assessing CIE (IA) marks

Sl. No.	Activity
	(a)Collect the standard specifications of at least ten instruments. OR
1	(b) Suggest cost-quality effective instruments of at least five different instruments
1	by preparing comparative statements containing function, specification, make,
	market-price, and warranty.
	(a)Collect service manuals of at least five instruments. OR
2	(b)Prepare a document on calibration types and procedures of at least two
	instruments.
Execution	Mode:
1. Abo	ve two activities or two similar activities can be assigned by the teacher per batch; each batch can have
at m	ost 2 students.
2. Activ	vities shall be carried out batch-wise throughout the semester and submit the report before the end of
the s	emester.
3. Repo	rt shall be qualitative and as concise as possible.

- 4. Each of the activity can be carried out off-class; however, demonstration/presentation if necessary, shall be done in the class room.
- 5. Teacher is expected to observe and record the progress of students' activities
- 6. Assessment shall be made based on quality of activity, presentation/demonstration and report in accordance with the following **rubrics** table

			Scale			Morks
Dimension	1 Unactinfactory	2 Developing	3 Satisfa atomy	4 Cood	5	(Example)
1. Research and gathering information	Does not collect information relate to topic	Collects very limited information, some relate to topic	Collects basic information, most refer to the topic	Collects more information, most refer to the topic	Collects a great deals of information, all refer to the topic	3
2. Full-fills team roles and duties	Does not perform any duties assigned to the team role	Performs very little duties	Performs nearly all duties	Performs almost all duties	Performs all duties of assigned team roles	2
3. Shares work equality	Always relies on others to do the work	Rarely does the assigned work, often needs reminding	Usually does the assigned work, rarely needs reminding	Always does the assigned work, rarely needs reminding.	Always does the assigned work, without needing reminding	5
4. Listen to other team mates	Is always talking, never allows anyone to else to speak	Usually does most of the talking, rarely allows others to	Listens, but sometimes talk too much,	Listens and talks a little more than needed.	Listens and talks a fare amount	3

(ii) Model of rubrics for assessing student activity

Directorate of Technical Education

	speak			
			Total marks	ceil(13/4) = 4

(iii) CIE/IA Tests (15 Marks)

Three tests have to be conducted, during specified schedule, in accordance with the test pattern given below and their average-marks shall be considered for CIE/IA.

(iv) Format of CIE/IA test question paper

		CIE Qu	uestion Paper					
Institution Nam	e and Code							
Course Co-ordi	nator/Teacher							
Program Name			Test No.			Units		
Class/Sem			Date			CL		
Course Name			Time			COs		
Course Code			Max. Marks	15		POs		
Note to students:	Answer all quest	ions						
Question No.		Question	1		Marks	CL	CO	PO
1								
2								
3								
4								

Legends: PO-Program Outcome, CO-Course outcome, CL-Cognitive Level, R-Remember, U-Understand, A-Apply Note: Internal choice may be given in each CO at the same cognitive level (CL).

(v) Model question paper for CIE

			CIE Que	stion Paper					
Institu	ution Nam	e and							
Code									
Cours	Course Co-								
ordina	ordinator/Teacher								
Program NameElectronics and CommunicationTest No.1					1		Units	1 & 2	
Class/Sem 3 rd Sem Date				1/1/2	017	CL	R/U/A		
Cours	o Namo	Electro	nic measurement	Time	10-1	1 A M	COs	1&2	
Course	e Ivanie	and ins	trumentation	Time	10-1		0.05	1 & 2	
Course Code 15EC34T Max. Marks 15							<i>POs</i> 1, 2 & 3		
Note t	o students:	Answer a	ll questions			1	r		n
No.			Question			Marks	CL	CO	PO
	A circuit	was tune	ed for resonance by eight	ht different stu	dents				
1	and the v	alues of a	resonance frequency in	KHz were rec	orded	05	Α	1	1,2,3
	as 532,5	548,543,5	35,546,531,543 and 3	536. Calculate	e the				
	arithmeti	c mean, a	verage deviation and va	ariance.					
r	Sketch t	he schen	natic of wheat-stone	bridge. Identit	fy its	05	U/A	1	1,2
² limitations									
Illustrate how load cell can be used for measuring force							. (=		
3	3 OR					05	A/R	2	1,2
	Explain t	he princi	ple of piezoelectric tran	sducers. List it	S				

15EC34T

applications		

(iv) Quiz for CIE (5 marks)

The teacher is expected to conduct the quiz and collect the quiz sheets as evidence. Quiz may be conducted for higher marks and be scaled down to 5 and fractional part shall be rounded off to the next higher integer. The questions shall cover all CLs.

Semester end-exam evaluation (SEE)

(i) End-exam question-paper pattern

Unit	Unit Name	Study Duration (Hrs.)	No. Questions for end-exam	
			PART – A 5 Marks	PART – B 10 Marks
1	Basics of measurements	07	01	1.5
2	Transducers	08	01	1.5
3	Analog meters	11	02	02
4	Testing instruments	10	02	02
5	Digital meters	10	02	02
6	Instrument maintenance	06	01	01
	Total	52	09	10
			(45 Marks)	(100 Marks)

(ii) Model Question Paper

Course Title: ELECTRONIC MEASUREMENTS AND INSTRUMENTATIONCourse Code: 15EC34TTime: 3 HrsSemester: THIRDMax. Marks: 100

Instructions : 1. Answer any **SIX** question from **Part** A (5x6=30 Marks)

2. Answer any SEVEN full questions from Part B (7x10=70 Marks)

Part A

- Following are the set of readings taken by two meters for a true value of 5v. Meter A: 4.81v, 4.81v, 4.79v, 4.78V Meter B:4.92V, 5.09V, 4.83V, 5.16V Decide the meter with better precision. Justify your answer after defining precision
- 2. Identify a transducer with excellent dynamic response and list its disadvantages and applications.
- 3. Compare the features of electromechanical instruments with electronic meters
- 4. Explain the working of a Ohmmeter whose scale has zero marking on right side.
- 5. Differentiate between alternate and chop methods of obtaining dual trace in a CRO
- 6. Justify the use of delay lines inside a CRO
- 7. List the advantages and disadvantages of digital meters
- 8. Sketch the block diagram of a digital LCR meter
- 9. State the significance of having functional block diagram in a service manual. Draw an example functional block diagram.

Part B

- 1. (a) Define Error. Indicate the ways of reducing systematic and random errors.(b) Explain IEEE standards
- 2. (a) Compare AC and DC bridges
 - (b) List the benefits of using electrical transducer
- 3. (a) A strain gauge has an unstrained length of 10cm and a resistance of 100KΩ. When its length reduces to 9.9 cm, the resistance decreases to 98 KΩ. Estimate its gauge factor.
 (b) Write a note on proximity sensors
- 4. In a particular application, it is necessary to accurately measure RMS value of sinusoidal, non sinusoidal and complex waveforms. Identify a suitable type of voltmeter and explain its operation.
- 5. (a) A milli Ammeter of 2.5Ω resistance reads upto 100mA. Estimate the resistance required to transform into a voltmeter of 0-10v. Sketch the relevant circuit.
 - (b) List the features of electrodynamometer type instruments.
- 6. (a) Describe the working of DSO(b) List the applications of sweep frequency generator.
- 7. Describe with a block diagram how function generator produces different types of wave forms. List its applications
- 8. Describe the working of a digital voltmeter which works on the principle of voltage to time conversion.
- 9 (a) Illustrate how an electronic counter can be used in ratio mode(b) List the features of IEEE488 GPIB
- 10. (a) List the precautions to be taken to achieve personnel safety during servicing(b) Outline the major benefits of grounding and shielding

Institutional activities (No marks)

The following are suggested institutional activities, to be carried out at least one during the semester. The course teacher/coordinator is expected to maintain the relevant record (Containing, Activity name, Resource persons and their details, duration, venue, student feedback, etc) pertaining to Institutional activities.

Sl. No.	Activity			
1	Organize Seminar, workshop or Lecture from experts on the modern			
	trends/developments in instrumentation and measurements.			
2	Organize hands-on practice for use of DSO/ECG/Any other modern measuring			
	instrument.			
3	Motivate students to take case study on instrumentation/measurements-based mini			
	projects (small applications) to inculcate self and continuous learning.			

Model Question Bank

Note: The questions in the question bank are indicative but not exhaustive. Sub-questions on different CLs may be combined to frame 10-marks questions or 10-marks questions given here can be splitted into 5-marks questions if necessary keeping weightage of CLs approximately intact and adhering to SEE end-exam pattern.

UNIT-1: Basics of measurements 5-mark questions

UNDERSTAND

- 1. Explain the necessity of measurements.
- 2. Compare the features of AC and DC bridges.

APPLICATION

- 3. A circuit was tuned for resonance by eight different students and the values of resonance frequency in KHz was recorded as 532, 548, 543, 535, 546, 531, 543 and 536. Calculate the arithmetic mean, average deviation and variance.
- 4. Sketch the schematic of Wheatstone bridge. Mention its relevance in measurements?
- Following are the set of readings taken by two meters for a true value of 5v. Meter A: 4.81V, 4.81V, 4.79V, 4.78V Meter B: 4.92V, 5.09V, 4.83V, 5.16V Choose the meter with better precision Justify your answer after defining precision

Choose the meter with better precision. Justify your answer after defining precision.

10-mark Questions

REMEMBER

- 1. Define speed of response, dynamic error, accuracy, fidelity and resolution w.r.t measurements
- 2. Define precision, error log, instrument and sensitivity w.r.t measurements.

UNDERSTAND

(a)Define error. Indicate the ways of reducing systematic and random errors.
 (b) Explain IEEE standards

UNIT-2: Transducers 5-mark questions

REMEMBER

- 1. List the factors which decide the selection of a transducer
- 2. List the features of PIR sensors

UNDERSTAND

- 1. Discuss the necessity of transducers
- 2. Compare strain gauges with capacitive transducers
- 3. Compare the features of wire type and foil type strain gauges

APPLICATION

- 4. Write a note on PIR sensors
- 5. Explain the principle of piezoelectric transducers. list its applications

10-mark Questions

UNDERSTAND

- 1. Explain active, passive, analog and digital transducers. Give an example for each **APPLICATION**
- 2. (a) Illustrate how load cell can be used for measuring force

Directorate of Technical Education

Karnataka State 1

(b) List the benefits of using electrical transducer

3. (a) A strain gauge has an unstrained length of 10cm and a resistance of 100KΩ.when its length reduces to 9.9 cm, the resistance decreases to 98 KΩ. Calculate its gauge factor.
(b) Write a note on proximity sensors

UNIT-3: Analog Meters 5-mark Questions

REMEMBER

1. Define calibration and summarize the calibration process of any instrument of your choice. **UNDERSTAND**

- 1. Compare the features of electromechanical instruments with electronic meters
- 2. Explain the working of Ohmmeter whose scale has zero marking on right side.

10-mark Questions

APPLICATION

- 1. In a particular application, it is necessary to accurately measure RMS value of sinusoidal, non sinusoidal and complex waveforms. Choose a suitable type of voltmeter and explain its operation.
- 2. (a) A milli ammeter of 2.5Ω resistance reads up to 100mAs. Calculate the resistance required to transform into a voltmeter of 0-10v. Sketch the relevant circuit
 - (b) List the features of electrodynamometer type instruments

UNIT-4: Testing instruments 5-mark Questions

REMEMBER

- 1. List the applications of CRO
- 2. List the applications of DSO
- 3. List the applications of spectrum analyzer

UNDERSTAND

- 4. Explain the working of a standard RF signal generator
- 5. Differentiate between alternate and chop methods of obtaining dual trace in a CRO

APPLICATION

- 6. Choose a suitable oscilloscope for VHF operations. List its advantages and disadvantages
- 7. Justify the use of delay lines inside a CRO
- 8. Choose suitable CRO probe for (i) small signal operations (ii) Current measurement. List their features
- 9. Choose suitable CRO probe (i) used for HF and high impedance operations (ii)which utilizes a FET. List their features

10-mark Questions

REMEMBER

1. List the applications of sweep frequency generator, distortion analyses and wave analyzer. **UNDERSTAND**

- 1. Explain the working of CRT with a neat sketch
- 2. (a) Describe the working of DSO
 - (b) List the applications of sweep frequency generator.

APPLICATION

- 3. Explain with a block diagram how function generator produces different types of wave forms. List its applications
- 4. Explain the working of a CRO with a block diagram

UNIT-5: Digital Meters 5-mark Questions

REMEMBER

1. List the advantages and disadvantages of digital meters

UNDERSTAND

2. Compare analog meters with digital meters

APPLICATION

- 3. Sketch the block diagram of a digital LCR meter
- 4. Sketch the block diagram of a digital frequency meter. list its advantages.
- 5. Show how time gap between two events can be measured digitally.

10-mark Questions

REMEMBER

1. (a) Illustrate how an electronic counter can be used in ratio mode (c)List the features of IEEE488 GPIB

UNDERSTAND

- 2. Explain the working of a successive approximation type digital voltmeter
- 3. Explain the working of a digital LCR meter

APPLICATION

- 4. Explain the working of a digital voltmeter which works on the principle of voltage to time conversion.
- 5. (a) Sketch the block diagram of a digital multimeter(b) Write a brief note on microprocessor based instruments

UNIT-6: Instrument Maintenance 5-mark Questions

REMEMBER

- 1. List the precautions to be taken to achieve personnel safety during servicing
- 2. List the causes of interference

UNDERSTAND

- 1. Describe the role of functional block diagram in servicing.
- 2. Explain how shielding reduces interference.
- 3. Explain how grounding reduces interference

APPLICATION

1. Write the significance of having functional block diagram in a service manual. Draw an example functional block diagram

10-mark Questions

REMEMBER

1. List the precautions to be taken to prevent instrument damage during servicing.

UNDERSTAND

1. Explain the procedure of generalized trouble shooting with a flow chart.

APPLICATION

- 2. List the methods of preventing interference
- 3. (a) List the precautions to be taken to achieve personnel safety during servicing
 (b) Outline the major benefits of grounding and shielding

End